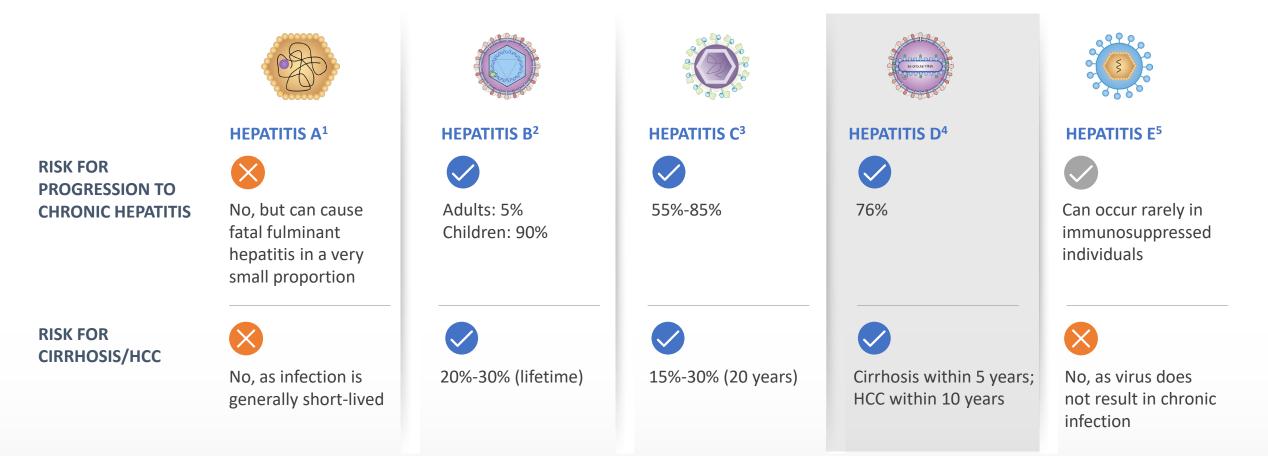
Hepatitis Delta Virus: Evaluation & Treatment

Robert Gish MD, FAASLD, AGAF, FAST

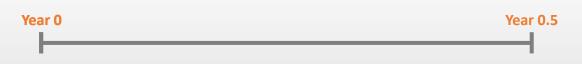

Robert G Gish Consultants LLC – Principal Hepatitis B Foundation - Medical Director Professor of Medicine: Loma Linda University University of Nevada Las Vegas University of Nevada Reno UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences

Disclosures

Please see www.robertgish.com

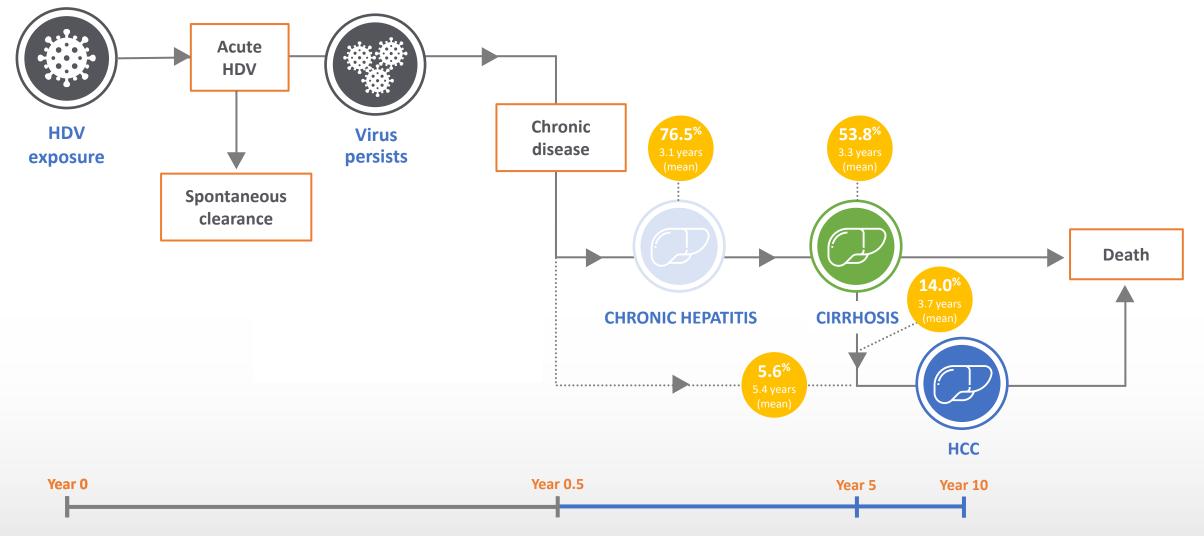
HDV Is the Most Severe Form of Viral Hepatitis

1. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-a 2. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c 4. Miao Z, et al. *J Infect Dis*. 2020;221(10):1677-1687. 5. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c 4. Miao Z, et al. *J Infect Dis*. 2020;221(10):1677-1687. 5. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c 4. Miao Z, et al. *J Infect Dis*. 2020;221(10):1677-1687. 5. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c 4. Miao Z, et al. *J Infect Dis*. 2020;221(10):1677-1687. 5. WHO. July 27, 2021. Accessed September 30, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-e


Etiology of HDV^{1,2}

	CAUSE	Infection with HDV	Only patients infected with HBV can contract HDV – HDV is acquired simultaneously (coinfection) or as a superinfection in those already infected with HBV
Ŷ	TRANSMISSION	Via percutaneous or mucosal contact with infectious blood or body fluids	 Common routes of transmission: contaminated needles or transfusion, sexual transmission, sharing razors and toothbrushes Not as common routes: Vertical transmission from mother-to-baby, and mucosal contact with infectious blood or body fluids
	SYMPTOMS	Often asymptomatic	No particular symptoms related specifically to HDV. Individuals with chronic infection are at high risk for developing severe liver disease, including cirrhosis and HCC
	COURSE OF INFECTION	Acute or chronic	Acute: occurs suddenly, may cause severe symptoms, resolves within 6 months. Can clear spontaneously; however, can lead to acute liver failure <i>Chronic:</i> long-term consequence of infection associated with high risk for liver disease
	CONSEQUENCES OF INFECTION	Increased risk for cirrhosis and HCC than HBV alone	HDV is the most severe form of chronic viral hepatitis due to more rapid progression to liver-related death and HCC than the other viruses

Clinical Course of HDV

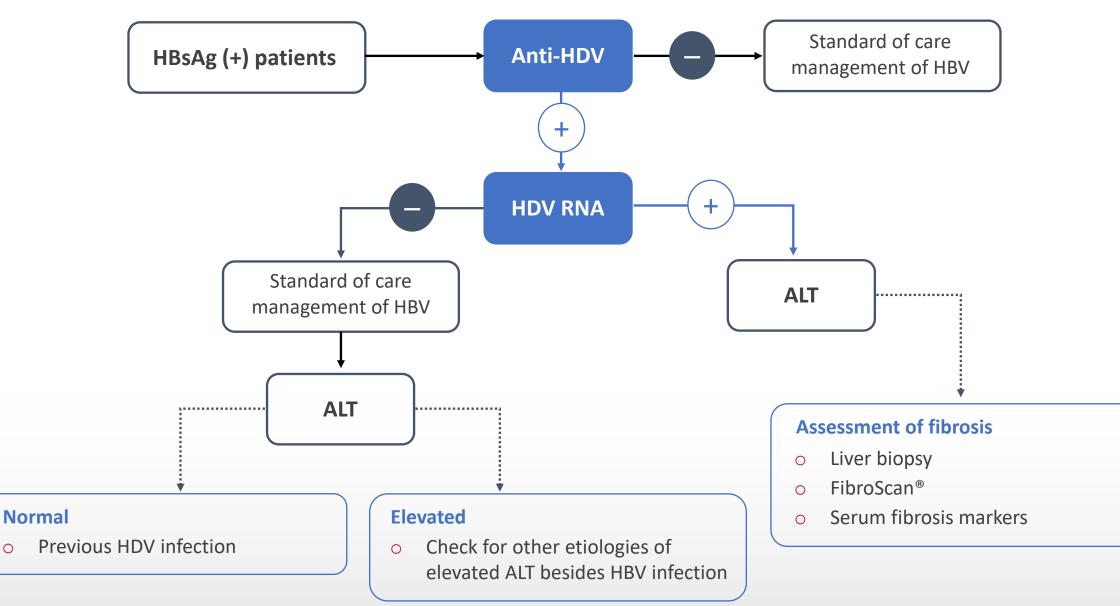

HBV/HDV coinfection often leads to rapid progression to cirrhosis and HCC

Clinical Course of HDV

Chronic HBV/HDV infection often leads to rapid progression to cirrhosis and HCC

Diagnosis of Different Stages of HDV Infection¹⁻⁴

Diagnostic Marker	Acute HDV/HBV Coinfection	Acute HDV Superinfection	Chronic HDV Infection
HBsAg	+	+	+
Anti-HBc, IgM	+	_	_
Serum HDAg (by EIA/RIA)	Early and short-lived, and frequently missed	Early and transient, and frequently missed	Transient and may not be detected
Serum HDV RNA (by RT-PCR)	+	+	+
Anti-HDV, total	Late, low titers	Rapidly increasing titers	High titers
Anti-HDV, IgM	+	Rapidly increasing and persistent titers	Variable titers, usually high titers

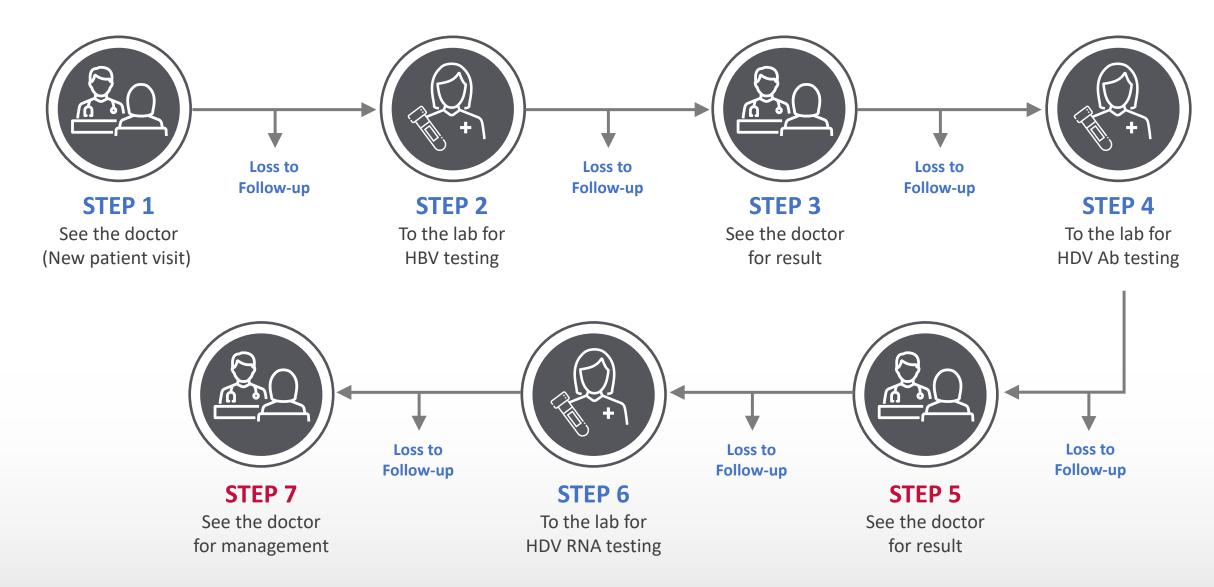

Note: HDV genotyping is not done routinely in clinical practice.

EIA=enzyme immunoassay; HBc=hepatitis B core; HBV=hepatitis B virus; HBsAg=hepatitis B surface antigen; HDAg=hepatitis delta antigen; HDV=hepatitis delta virus; IgM=immunoglobulin M; RIA=radio immunoassay; RNA=ribonucleic acid; RT-PCR=reverse transcription polymerase chain reaction.

1. Terrault NA, et al. *Hepatology*. 2018;67(4):1560-1599. 2. Sarin SK, et al. *Hepatol Int*. 2016;10(1):1-98. 3. WHO. March 2015. Accessed March 30, 2021.

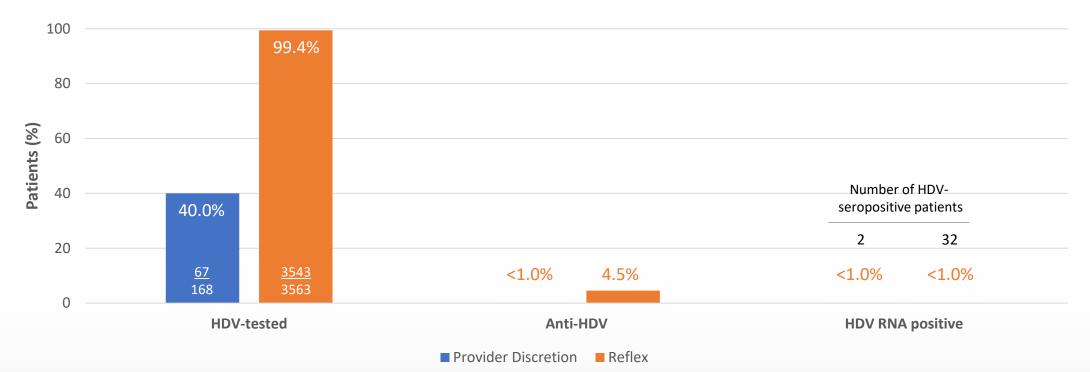
https://apps.who.int/iris/bitstream/handle/10665/154590/9789241549059_eng.pdf?sequence=1 4. Cheung A, Kwo P. Clin Liver Dis. 2020;24(3):405-419.

Algorithm for the Evaluation of HDV


0

Test Name	Test Code	Reference Lab	CPT Code	
	4990	Quest Diagnostics		
UDV Antibady Tatal	20799	ARUP Laboratories		
HDV Antibody, Total	20799	Mayo Clinic Laboratories		
	99202	Viracor Eurofins	86692	
	20799	BioAgilytix	80092	
	35664	Quest Diagnostics		
HDV Antibody, IgM	30336	Viracor Eurofins		
	98507	ARUP Laboratories		
LIDV DNA Quentitative	37889	Quest Diagnostics	07700	
HDV RNA, Quantitative	2013881	ARUP Laboratories	87799	
	34469	Quest Diagnostics	87798	
HDV RNA, Qualitative	3900	Viracor Eurofins		
	1844	Bioreference Laboratories		
	2006450	ARUP Laboratories	07200	
HDV Antigen	-	BioAgilytix	87380	
HDV Genotyping and NAT	CDC-10328	CDC	Not CLIA approved	

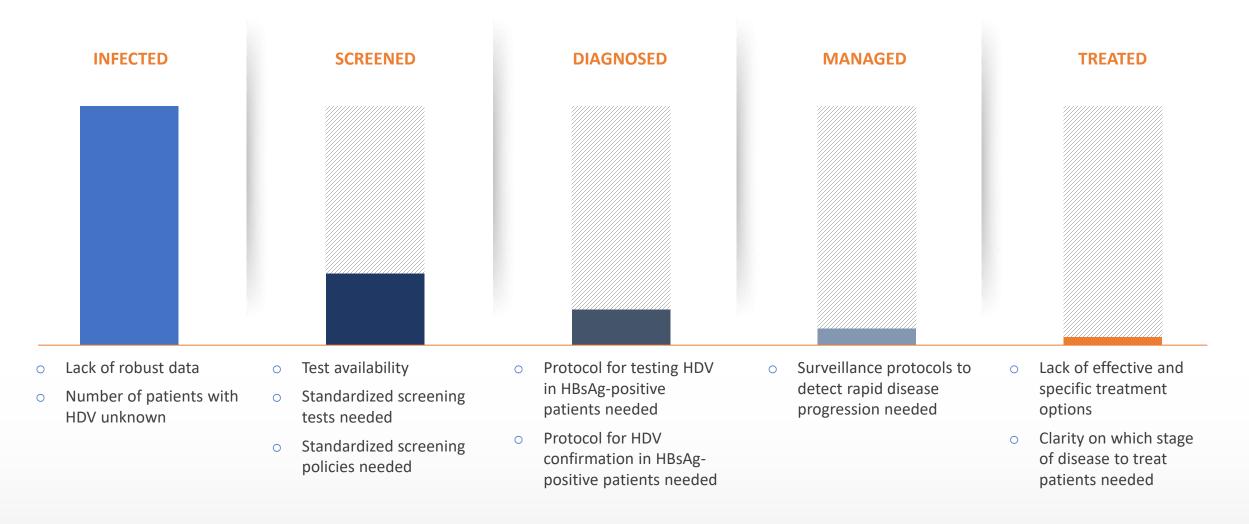
This may not be a comprehensive list of all available codes and labs offering HDV testing. This is for your information only. Each provider must make an individual decision for each patient's needs. Gilead does not guarantee the coverage or reimbursement of any item or service through the use of these codes


https://testdirectory.questdiagnostics.com/test/home accessed Feb 8, 2022; https://www.aruplab.com/testing accessed Feb 8, 2022; https://www.mayocliniclabs.com/test-catalog/search?q=hepatitis+delta accessed Feb 15, 2022; https://www.eurofins-viracor.com/clinical/test-menu/?search_field=HDV accessed Feb 15, 2022; https://www.bioagilytix.com/bioagilytix-diagnostics/ accessed Feb 15, 2022, https://www.bioreference.com/physicians/resources/test-directory/?type=by_test&test_id=1840 accessed Feb 15, 2022

Current HDV Testing: Impact on Follow-up

HBsAg-positive Reflex to Anti-HDV: 2 London Centers

Cross-sectional analysis of HDV testing among HBsAg-positive patients at 2 London Centers, 2005-2012



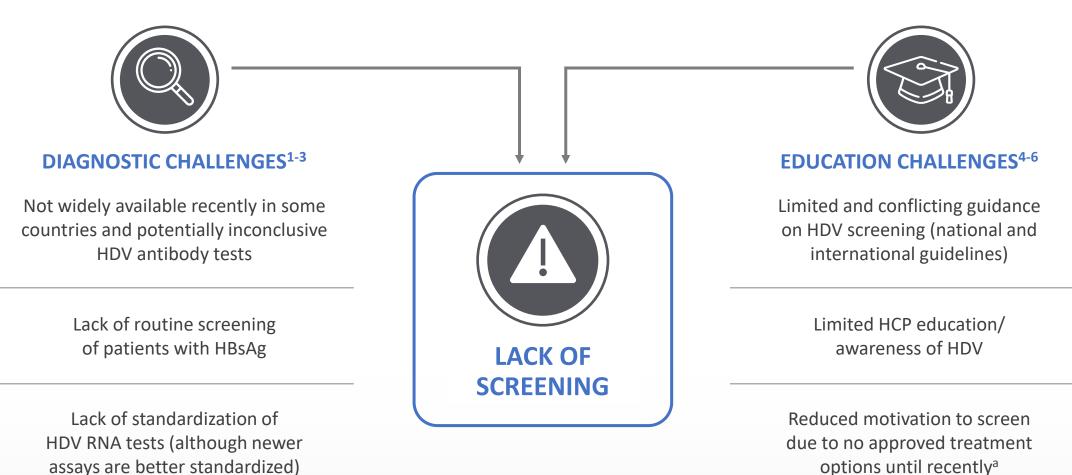
HDV testing based on provider discretion or reflex

e weflere le bewete we ele evitiere e ele ierre d'eveti

The center with a reflex laboratory algorithm achieved anti-HDV testing of almost all first HBsAg-positive samples over a 12-year period

There Are Unmet Needs Across the HDV Cascade of Care¹⁻³

Testing Recommendations for HDV


WHOM TO TEST?	HOW TO TEST?
 (2018) HBsAg+ patients with HDV risk factors Low/undetectable HBV DNA and high ALT 	Anti-HDVHDV RNA
(2017) • All patients infected with HBV	NO RECOMMENDATION
 Patients with chronic HBV and chronic liver disease 	HDAg or Anti-HDVHDV RNA
(2015) NO RECOMMENDATION	Anti-HDVHDV RNA

AASLD=American Association for the Study of Liver Diseases; APASL=Asian Pacific Association for the Study of the Liver.

1. Terrault NA, et al. Hepatology. 2018;67(4):1560-1599. 2. EASL. J Hepatol. 2017;67(2):370-398. 3. Sarin SK, et al. Hepatol Int. 2016;10(1):1-98. 4. WHO. March 2015. Accessed March 30, 2021.

https://apps.who.int/iris/bitstream/handle/10665/154590/9789241549059_eng.pdf?sequence=1

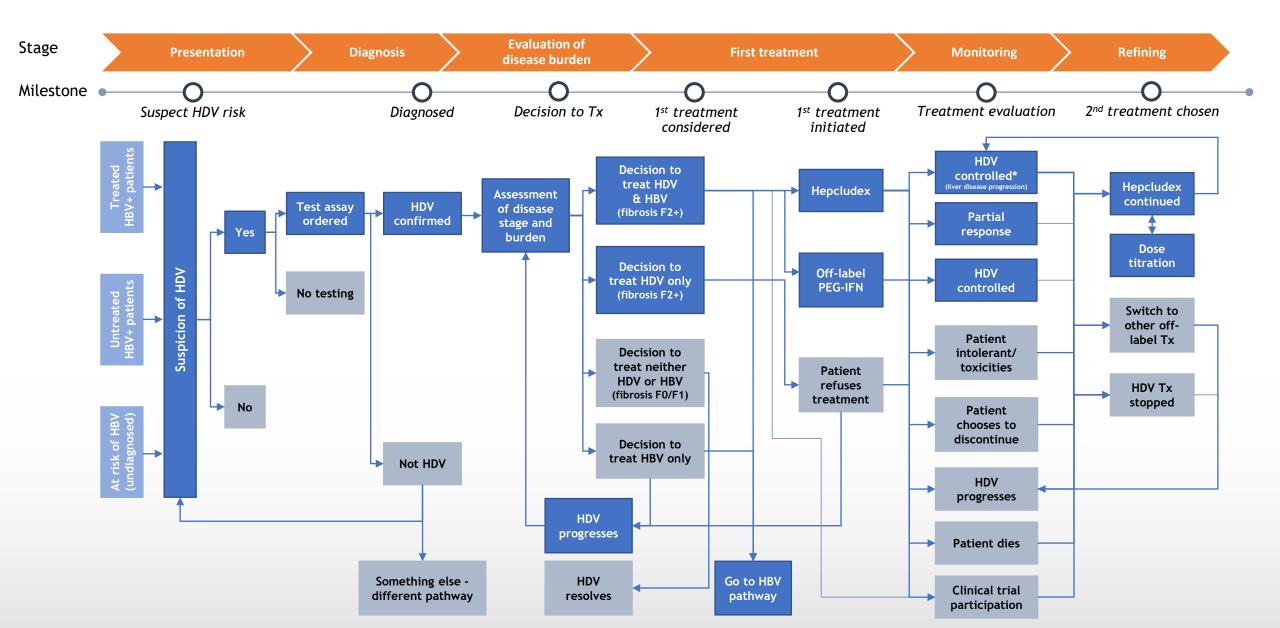
Barriers to HDV Screening

^aNo approved therapy exists in the United States.

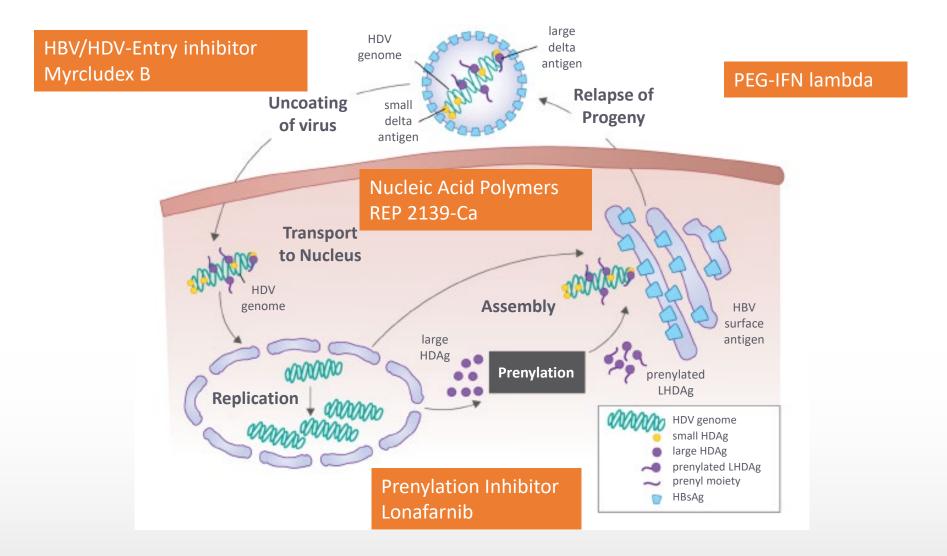
1. Wedemeyer H, Negro F. *Gut.* 2019;68(3):381-382. 2. Safaie P, et al. *Virus Res.* 2018;250:114-117. 3. EASL. *J Hepatol.* 2017;67(2):370-398. 4. Terrault NA, et al. *Hepatology.* 2018;67(4):1560-1599. 5. Sarin SK, et al. *Hepatol Int.* 2016;10(1):1-98. 6. WHO. March 2015. Accessed March 30, 2021. https://apps.who.int/iris/bitstream/handle/10665/154590/9789241549059_eng.pdf?sequence=1

Guideline recommendations for management of HDV - treatment

	Treatment options	Treatment endpoint	Management
AASLD ¹ (2018)	 PEG-IFNa for 1 year Patients with elevated HDV RNA and ALT elevation 	 Undetectable HDV RNA ALT normalisation/ improved histology 	 Test for HDV relapse if ALT increases Manage in specialist centres
APASL² (2016)	 PEG-IFNa for ≥1 year Optimal duration of therapy not well defined 	Undetectable HDV RNA	 Monitor for ≥6 months post-treatment
EASL ³ (2017)	 PEG-IFNa for ≥48 weeks HDV/HBV patients with compensated liver disease 	Undetectable HDV RNA	 Long-term HDV RNA monitoring required
WHO ⁴ (2015)	 PEG-IFNa for ≥1 year 	Undetectable HDV RNA	No recommendation


Terrault N, et al. Hepatology 2018;67:1560-99; 2. Sarin SK, et al. Hepatol Int 2016;10:1-98;
 European Association for the Study of the Liver. J Hepatol 2017;67:370-98;

4. WHO HBV guidelines. March 2015. Available at:


https://apps.who.int/iris/bitstream/handle/10665/154590/9789241549059_eng.pdf?sequence=1 (Accessed March 2021).

NOTE: Treatment of HDV with PEG-IFNa is off-label. AASLD: American Association for the Study of Liver Diseases; ALT: alanine aminotransferase; APASL: Asian Pacific Association for the Study of the Liver; EASL: European Association for the Study of the Liver; HDV: hepatitis D virus; PEG-IFN: pegylated interferon; RNA: ribonucleic acid; WHO: World Health Organization.

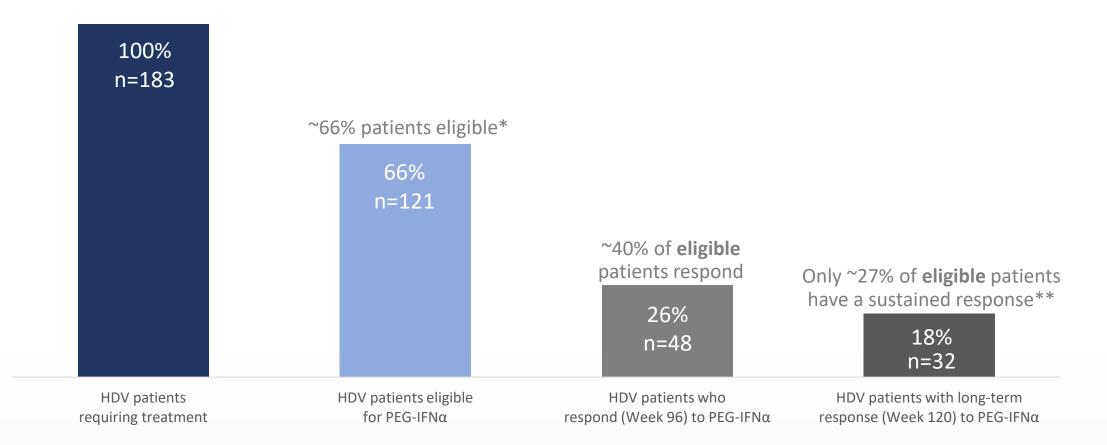
Identification and management of chronic HDV

Hepatitis Delta: New Therapies

Regulatory and guideline efficacy endpoints

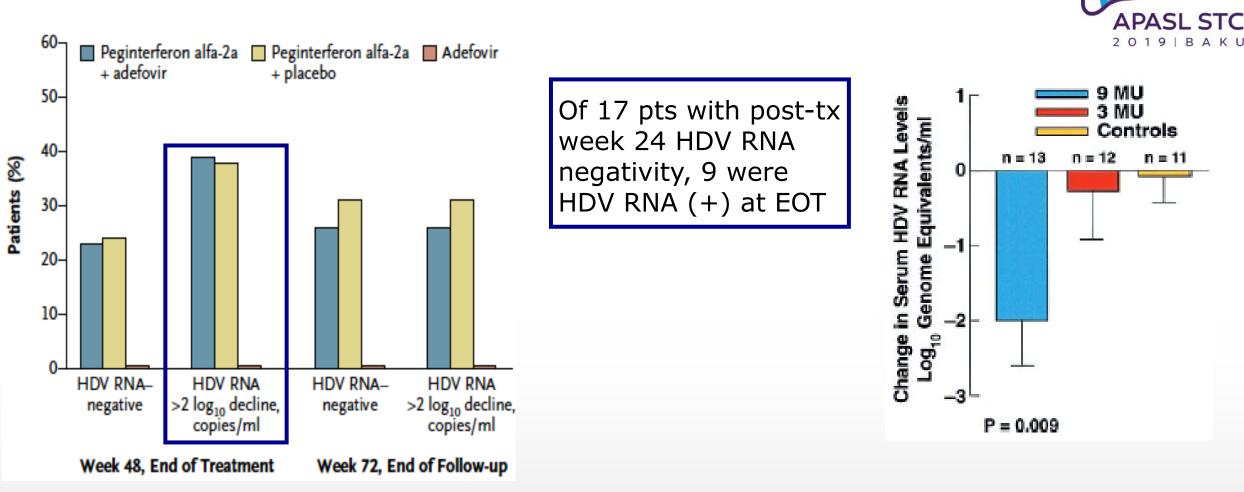
Chronic On-Therapy Endpoint

Draft Guidance November 2019 "...a greater than or equal to 2-log₁₀ decline in HDV RNA and ALT normalization on-treatment could be considered an acceptable surrogate endpoint" Cure Off-Therapy Endpoint


"The proportion of trial patients with **undetectable serum HDV RNA** (defined as less than the lower limit of quantification (LLOQ), target not detected (TND)) and **ALT normalization**."

2019 EASL-AASLD HBV Treatment Endpoints Conference October 2019 "...a 2-log reduction in HDV RNA might suffice."

"...**undetectable serum HDV RNA 6 months after stopping treatment** as the endpoint ...Normalisation of ALT is also desired"


Response to PEG-IFNa treatment

Only a subset of patients are treated with PEG-IFNa, of which a small proportion respond to treatment

 *Ineligibility based on contraindications, intolerance and presence of advanced liver disease in HIDIT-II (62 of 183 screened did not meet inclusion criteria or met exclusion criteria);
 **Response defined as undetectable HDV RNA after 120 weeks of treatment. HDV: hepatitis D virus; PEG-IFNa: pegylated interferon alpha.

EOT HDV RNA ≥ 2 Log Decline Improves Survival

Wedemeyer, Yurdaydin et al, NEJM 2011

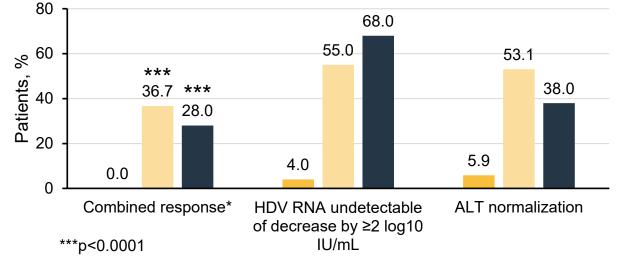
Farci et al, Gastro 2004

HEPCLUDEX (Bulevirtide) EMA Indication

*	Indication	 Treatment of chronic hepatitis delta virus (HDV) infection in HDV RNA-positive adult patients with compensated liver disease
A Suit	Administration	 Administered at 2 mg once daily (every 24 hours ± 4 hours) by subcutaneous injection Monotherapy or in co-administration with a nucleoside/nucleotide analogue for treatment of underlying HBV infection
	Instructions for Use	 Treatment should be initiated only by a physician experienced in the treatment of patients with HDV infection Optimal treatment duration is unknown. Treatment should be continued as long as associated with clinical benefit

Bulevirtide monotherapy at low and high dose in patients with chronic hepatitis delta: 24 weeks interim data of the phase 3 MYR301 study

Efficacy endpoints



- Baseline demographics:
 - 57.3% of patients were male, 82.7% white, and the mean age was 41.8 years
 - HDV RNA levels were 5.05 log₁₀ IU/mL and ALT mean levels were 110.9 U/L
 - 47.3% of patients had compensated liver cirrhosis
- Safety: BLV was well tolerated during the first 24 weeks

TEAE (patient n)	Arm A (Observation; n=51)	Arm B (BLV 2 mg QD; n=49)	Arm C (BLV 10 mg QD; n=50)
Any	55 (26)	121 (32)	245 (36)
Grade 3–4 AE	2 (4)	2 (4)	1 (2)
Serious TEAE	1	0	0

- *Efficacy*: after 24 weeks, significantly more patients treated with BLV (2 mg or 10 mg) vs no antiviral treatment achieved:
 - A combined virological and biochemical response*
 - An HDV RNA decrease by ≥2 log10 IU/mL
 - ALT normalization

■ Arm A (observation) ■ Arm B (BLV 2 mg QD) ■ Arm C (BLV 10 mg QD)

CONCLUSION

- These interim data from the phase 3 trial confirm that 24 weeks of BLV monotherapy was associated with significant HDV RNA decline and improvement in biochemical disease activity
- BLV is well tolerated in patients with compensated HDV infection
- These findings further support the conditional approval of
 2 mg BLV in the EU

*Undetectable HDV RNA (<LoD) or decrease by ≥2 log10 IU/mL and ALT normalization. Wedemeyer, et al. ILC 2021; LBP-2730

Beyond cATU: Bulevirtide ± PegIFNα-2a for Chronic HDV Infection: Virologic Efficacy

	HDV RNA Undetectable or Decrease by ≥2 log ₁₀ From Baseline,* ⁺ % (n/N)		
Time	Bulevirtide (n = 77)	Bulevirtide + PegIFNα-2a (n = 68)	
Day 0	0	0	
Mo 1	1.5 (1/66)	22.0 (11/50)	
Mo 2	14.8 (8/54)	48.8 (20/41)	
Mo 3	28.2 (20/71)	68.6 (35/51)	
Mo 6	52.3 (34/65)	84.4 (38.45)	
Mo 9	59.2 (29/49)	89.5 (34/38)	
Mo 12	68.3 (28/41)	93.9 (31/33)	

*Missing does not equal failure. [†]Study not powered to compare bulevirtide vs bulevirtide + pegIFNα-2a.

Other Drug classes by therapeutic target in clinical development

	HBsAg secretion inhibitors	Prenylation inhibitors	Immune modulators
Therapies in development (Company)	• REP2139 (Replicor)	 Lonafarnib (Eiger Biopharmaceuticals) 	 PEG-IFNλ (Eiger Biopharmaceuticals)
Stage of replication cycle affected	 Broad-spectrum antiviral activity 	 Inhibits L-HDAg prenylation 	 Induces IFN-stimulated genes and activates JAK and STAT
Consequence(s)	 Inhibits export of HBsAg to serum HDV virions cannot be formed without HBsAg 	 Essential for interaction with HBsAg Lack of prenylation prevents HDV virion formation 	 General broad antiviral response
Progress	• Phase 2 trials	 Phase 3 trials* 	• Phase 2 trials
			*Lonafarnib is boosted with ritonavir.

Gilman C, et al. World J Gastroenterol 2019;25:4580-97; Koh C, et al. Gastroenterology 2019;156:461-6. HBsAg: hepatitis B surface antigen; HDV: hepatitis D virus; IFN: interferon; JAK-STAT: Janus-kinase-signal transducer and activator of transcription; L-HDAg: large hepatitis D antigen; PEG-IFN: pegylated interferon.

Do we need HDV cure in the era of HBV cure?

- HDV is the most severe form of hepatitis
- 15 20 Million chronically infected, presumably more
- Lack of global epidemiology data
- HDV requires only small amounts of HBsAg to complete viral packaging
- Only sterilizing HBV cure will obviate a need for an HDV cure
- Functional HBV cure: Maybe, but when ? Sufficient for HDV cure/control ?
- Sterilizing HBV cure: Not in sight, seems necessary for HDV cure !
- Do we need HDV cure: YES !

HDV Treatments Are Needed – HDV Cure is the Objective!

- HDV is the most severe form of hepatitis
- HDV requires only small amounts of HBsAg to complete viral packaging
- Theoretically, Sterilizing HBV cure is the only way to obviate a need for an HDV cure
- **Sterilizing HBV cure**: Nowhere in sight, remove all cccDNA and all integrants
- **Functional HBV cure:** Can it be discovered, developed and approved in our lifetime?
 - I expect 30% Functional Cure with 4 drug combination therapies, 60% Sustained HBV DNA

Suppression and 10% Relapse < 4 years

HDV treatments: In Phase 3; on track to be approved within the next 2-3 years!

Thank you!

Acknowledgements:

