What current treatments are available for hepatitis D?

Currently there is no approved treatment for hepatitis D, but pegylated interferon (PEG-IFN) is often used in hopes of stimulating the body's immune system to fight the virus. A small percentage of patients (<30%) experience remission when injected weekly over 48 weeks. Emerging research is showing higher success rates with injections longer than 1 year. Oral nucleosides (antivirals) approved for hepatitis B have no effect on hepatitis D.

What new drugs are in clinical trials for hepatitis D?

There are currently 7 new drugs in clinical trials being tested for effectiveness against the hepatitis D virus.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism</th>
<th>Company</th>
<th>Clinical Trial Phase</th>
<th>Designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lonafarnib</td>
<td>Prenylation Inhibitor</td>
<td>Eiger BioPharma, USA</td>
<td>Phase III</td>
<td>FDA Breakthrough Therapy Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Fast Track Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Orphan Drug Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EMA Orphan Drug Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EMA PRIME</td>
</tr>
<tr>
<td>Myrcludex B (Bukaviride)</td>
<td>Entry Inhibitor</td>
<td>MYR GmbH, Germany</td>
<td>Phase III</td>
<td>EMA PRIME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Breakthrough Therapy Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Orphan Drug Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Promising Innovative Medicine (PIM) Designation by British MHRA</td>
</tr>
<tr>
<td>Lambda (Pegylated Interferon)</td>
<td>Immune Response Stimulator</td>
<td>Eiger BioPharma, USA</td>
<td>Phase II</td>
<td>FDA Orphan Drug Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Fast Track Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FDA Breakthrough Therapy Designation</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>NTCP Inhibitor</td>
<td>Ziauddin University Hospital, Pakistan</td>
<td>Phase II</td>
<td>N/A</td>
</tr>
<tr>
<td>REP 2139/ REP 2165</td>
<td>HBsAg Inhibitor</td>
<td>Replicor, Canada</td>
<td>Phase II</td>
<td>N/A</td>
</tr>
<tr>
<td>GI-18000</td>
<td>Immune Response Stimulator</td>
<td>GlobalImmuno, USA</td>
<td>Pre-clinical</td>
<td>N/A</td>
</tr>
<tr>
<td>ALN-HD</td>
<td>RNAi Gene Silencer</td>
<td>Alnylam, USA</td>
<td>Pre-clinical</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Lonafarnib **PHASE 3**

Lonafarnib is a "prenylation inhibitor" that works by targeting the protein assembly process, which prevents new virus from being created. In a recent study, Lonafarnib combined with Ritonavir showed promise in reducing hepatitis D virus levels.

Myrcludex B **PHASE 3**

Myrcludex B is an “entry inhibitor” that works by stopping the virus from entering and infecting hepatocytes (liver cells) and breaking the cycle of reinfection. It has shown activity against the hepatitis B virus, but is also being tested for effectiveness against hepatitis D. A recent study showed promise for Myrcludex B when combined with PEG-INF in reducing hepatitis D virus levels.
Ezetimibe PHASE 2
Ezetimibe is a pill currently being used as a treatment to lower cholesterol. Now being studied for effectiveness against hepatitis D, it works by inhibiting NTCP, the receptor required for hepatitis D to enter and infect liver cells.

Rep 2139 & 2165 PHASE 2
REP 2139 and REP 2165 are "nucleic acid-based amphipathic polymers (NAPs)", taken as a pills, that work by preventing liver cells from releasing hepatitis B virus into infected liver cells. It is being evaluated for use in combination with PEG-IFN.

GI-18000 PRE-CLINICAL
GI-18000 is an "immune response stimulator", taken as a pill, that works by causing the host's T-cells to target and fight the hepatitis B and D infected liver cells.

ALN-HDV PRE-CLINICAL
ALN-HDV is an "RNA gene silencer" and works by "silencing" the viral RNA with compounds that interfere with, and cause the destruction of the virus genetics.

How can patients locate clinical trial sites?
Patients can search open and upcoming clinical trials on the Clinicaltrials.gov website. For detailed instructions on searching and locating clinical trials, visit our helpful guide. Patients should also discuss with their doctors the possibility of participating, and see if their doctor can connect them with a local trial.

How long will it take for new treatments to be available for all patients?
In the United States, new drugs must go through a multi-phase clinical trial process in order to test a drug's usefulness, safety and effectiveness before it is made available to all patients. Drugs face many obstacles during this process and not all of them may make it to the patient market. While this process can take anywhere from 5-15 years, fast-track and priority designations can speed up the process.

Clinical Trial Process

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>FDA Review</th>
<th>Phase IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring safety and dosing of the drug</td>
<td>Exploring the effectiveness of the drug</td>
<td>Exploring the safety and effectiveness compared to currently available treatments</td>
<td>To confirm safety and effectiveness of the drug</td>
<td>Evaluating the drug over time in a large number of patients</td>
</tr>
</tbody>
</table>

Drug approved for human testing • Fast-track designations can speed up the process

Drug is approved

The Hepatitis B Foundation is a national nonprofit research and disease advocacy organization for hepatitis B. It established Hepatitis Delta Connect as a dedicated program in 2016 to provide information and support for those affected by hepatitis D.