Hepatitis D Treatment Endpoints:

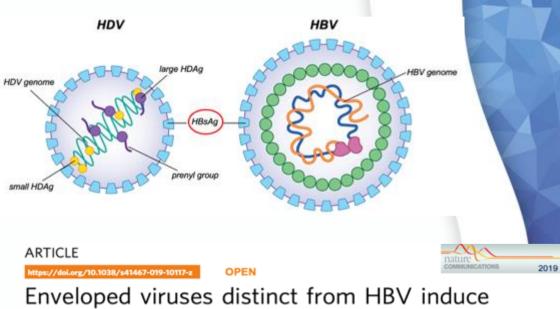
How Do We Measure Success in the Era of Emerging Therapies?

Ohad Etzion M.D. Director, Department of Gastroenterology & Liver Diseases Soroka University Medical Center Beer-Sheva, Israel

Honoraria for consulting or speaking and/or research grants:

Abbvie, Gilead, MSD, Eiger, HepQuant, Canfite and ChemoMab

Outline

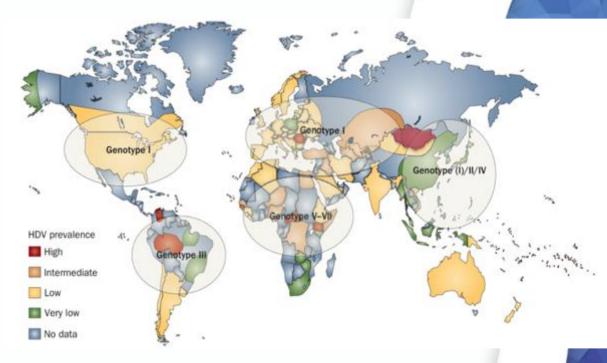

HDV-epidemiology & clinical aspects

🟫 CI AL IT 1(20

- Current management
- Defining suitable endpoints for clinical trials in HDV
- Review data from recently completed studies and outline of upcoming trials evaluating novel therapies

Hepatitis Delta Virus

- An incomplete RNA virus
- Co-dependent on HBV for packaging
- Dependent on host RNA polymerases for replication
- Single ORF encoding 2 nonstructural proteins
- 2 patterns of infection:
 -Coinfecton
 - -Super infection

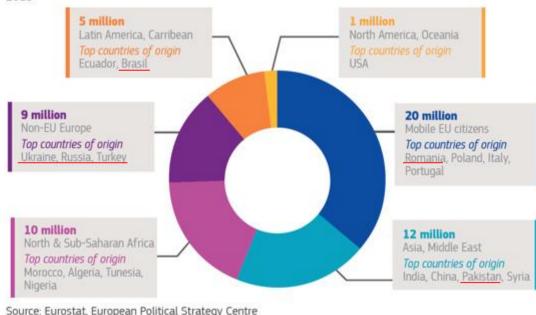

CLALIT 100

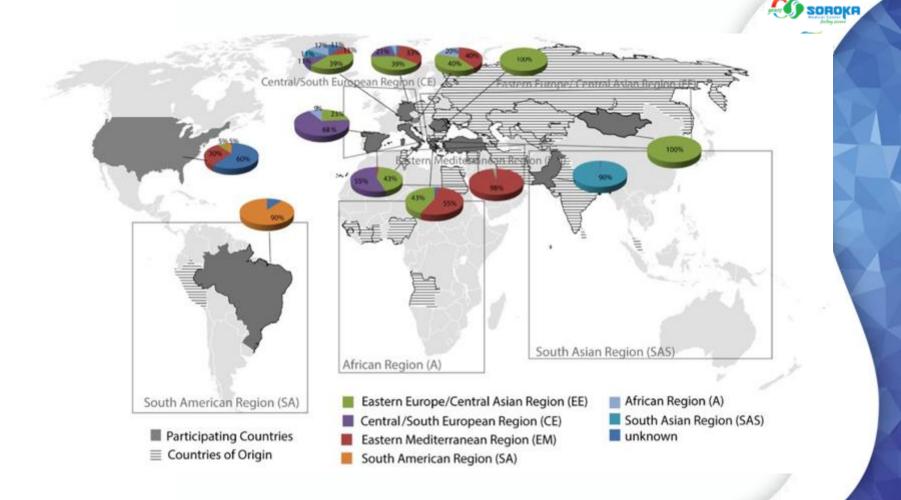
Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo

Jimena Perez-Vargas ¹, Fouzia Amirache¹, Bertrand Boson¹, Chloé Mialon¹, Natalia Freitas¹, Camille Sureau², Floriane Fusil¹ & François-Loïc Cosset ¹

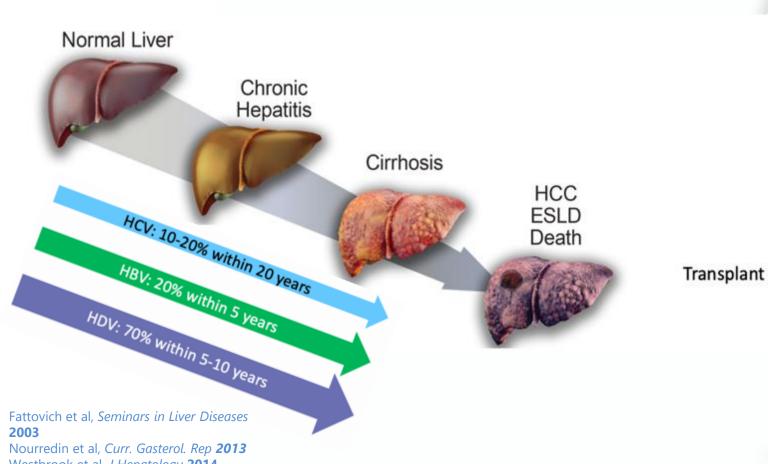
Epidemiology

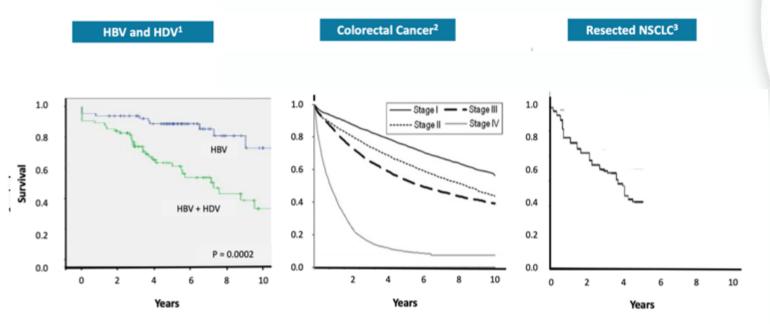
- 15-20 million affected worldwide
- ~5% HBV infected patients
- Genotype 1-most common
- HDV is found in every country except:
- Where it is not tested for
- Anti-HDV tests don't work



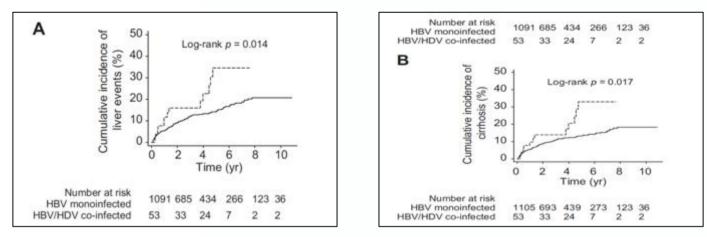

Wedemeyer, H. & Manns, M. P.. Nat. Rev. Gastroenterol. Hepatol. 2010

Recent immigration trends


Where do Europe's migrants come from?

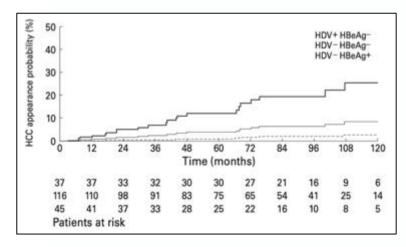

Total foreign-born communities by continent of origin in EU28, Top countries of origin 2016

HDV: Most severe form of chronic viral hepatitis



SOROKA

CLALIT 100,


¹Serrano et al, EASL 2011; ²Cancer Causes Control, 2012, 23:1421–1428; ³Cerfolio et al, Ann Thorac Surg, 2007, 84:182–90

SOROKA

CLALIT 100,....

Manesis et al, J Hepatol 2013

Fattovich et al, Gut 2000

CHD-Liver transplantation

Table 1 Prevalence of HDV infection in Israel

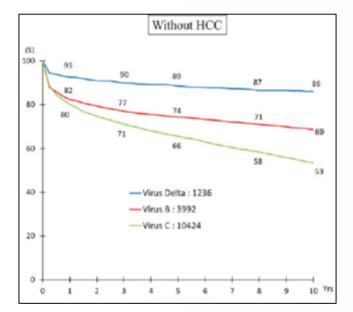
Samples tested, N	HDV negative samples	HDV seropositive samples	% seropositive (95% CI)	Odds Ratio (95% CI)	<i>p</i> -value
8969	8382	587	6.5 (6.1-7.1)		
8452 ^a	45.2± 16 (n=7919)	47.5± 13.8 (n=533)		1.0 (1.0-1.1)	< 0.01
5046	4734	312	6.2 (5.6-6.9)	Reference	0.18
3698	3443	255	6.9 (617.8)	1.1 (0.9-1.3)	
	N 8969 8452 ³ 5046	N samples 8969 8382 8452 ^a 45.2± 16 (n=7919) 5046 4734	N samples samples 8969 8382 587 8452 ^a 45.2± 16 (n=7919) 47.5± 13.8 (n=533) 5046 4734 312	N samples samples (95% Cl) 8969 8382 587 6.5 (6.1-7.1) 8452 ^a 45.2± 16 (n=7919) 47.5± 13.8 (n=533) 5046 5046 4734 312 6.2 (5.6-6.9)	N samples samples samples (95% Cl) (95% Cl) 8969 8382 587 6.5 (6.1-7.1) 8452 ^a 45.2± 16 (n=7919) 47.5± 13.8 (n=533) 1.0 (1.0-1.1) 5046 4734 312 6.2 (5.6-6.9) Reference

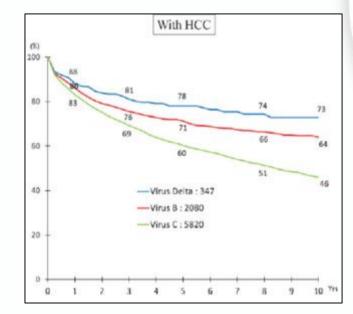
^aThe number of samples for which this information was available

Shirazi et al. BMC Infectious Diseases 2018

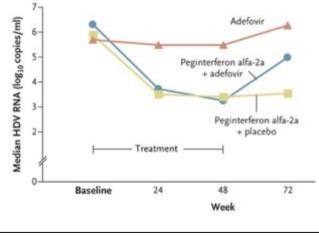
Hadassah Medical Center: 1990-2005

Indication	No	%
HBV positive	71	85%
HBV/HDV coinfected	12	15%*


* 18% after excluding cases where HBV was not the primary indication for liver transplantation


Milgrum Y & Saffadi R personal communication

Survival following LT for CHD

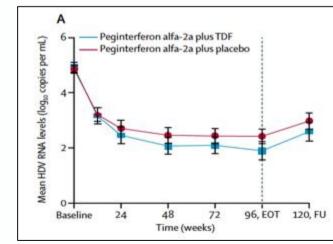


Roche & Samuel. Semin Liver Dis 2012

Current management of CHD

- No approved treatment for CHD!
- No impact of NUCs
- Pegylated IFN-Alpha
 - \circ significant side effects
 - o limited efficacy
 - o patients with advanced disease not eligible
 - high long-term relapse rates

HIDIT-I



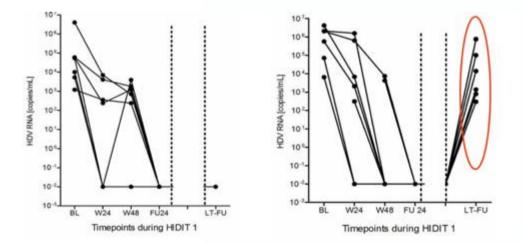
Wedemeyer H. Engl J Med. 2011

HIDIT-II

SOROKA

CLALIT 100

Wedemeyer H. Lancet Infect Dis 2019

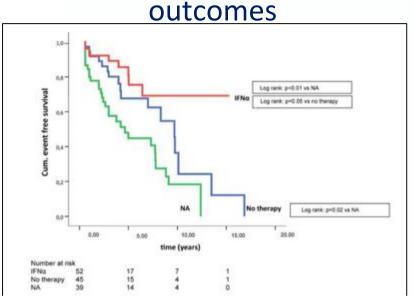

Is SVR feasible with IFN-Alpha?

<u>HIDIT-I</u>

HDV Neg at W24 post treatment 28%

HIDIT-II

HDV Neg at W24 post treatment 27%



56% of patients that were HDV neg at W24 post treatment became HDV RNA pos on long-term follow up

Heidrich B. Hepatology 2014

IFN-Alpha is associated with improved long-term clinical

CLALIT 100 mars

Wranke A. Hepatology 2017

Prevalence and clinical course of hepatitis delta infection in Greece: A 13-year prospective study

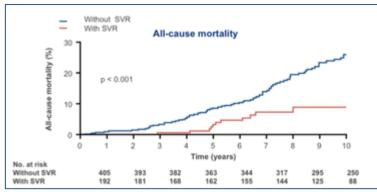
Emanuel K. Manesis^{1.*}, Georgia Vourli², George Dalekos³, Themistoclis Vasiliadis⁴, Nina Manolaki⁵, Athina Hounta⁶, Sotirios Koutsounas⁷, Irini Vafiadis⁸, Georgia Nikolopoulou⁹, Gregory Giannoulis¹⁰, George Germanidis¹¹, George Papatheodoridis¹², Giota Touloumi²

HR for liver related-events in IFN-Alpha treated patients: 0.14 (0.02-0.86); p=0.033

Manesis et al, J Hepatol 2013

Endpoints in clinical trials in CLD

Goals of treatment

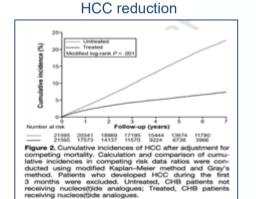

Prevent progression of liver disease and its complications

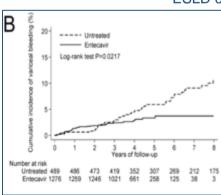
- Decompensation
- HCC
- Death

Endpoints

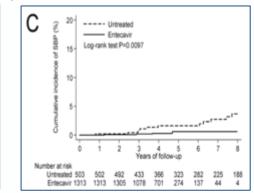
Surrogates markers that are reasonably likely to predict clinical benefit

SVR in Hepatitis C



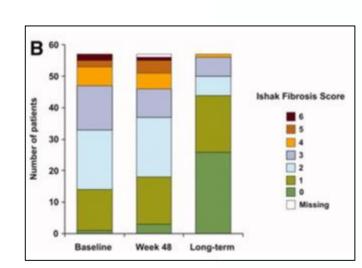


SOROKA


CLALIT 100

Hepatitis B virus suppression

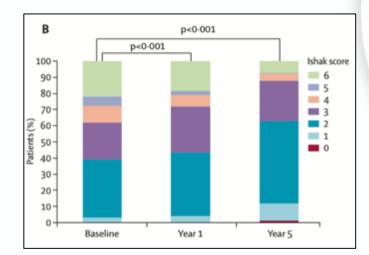
ESLD complications



Wu CY Gastroenterology 2014

Su TH Liver Int 2016

Long-term NUC therapy in HBV is associated with fibrosis regression



Entecavir

Chang TT. Hepatology 2010

Marcellin P. The Lancet 2013

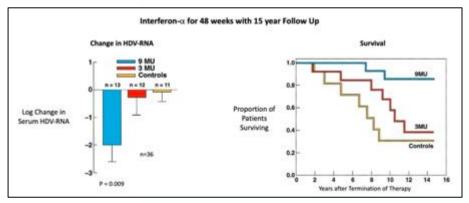
Choosing endpoints for clinical trials of novel

- Data on specific surrogate endpoints that are associated with long term clinical benefit is sparse
- Cure from HDV may not be feasible
- Selection of endpoints that are <u>reasonably</u> likely to predict clinical benefit is preferable over ideal endpoints that may not yet be achievable (HBsAg loss, SVR)

Choosing endpoints for clinical trials of novel

- Measures of viral suppression
 - ✓ Viral log decline
 - ✓ Virus undetectability
- Markers of improvement in necroinflammation
 - ✓ ALT normalization
 - Improved histology scores
- ✓ Composite endpoints have advantage over singular endpoints
- ✓ Durability of response assessed by primary or secondary endpoints

JOURNAL OF HEPATOLOGY


CLALIT 100

Treating chronic hepatitis delta: The need for surrogate markers of treatment efficacy

Cihan Yurdaydin^{1,*}, Zaigham Abbas², Maria Buti³, Markus Cornberg⁴, Rafael Esteban³, Ohad Etzion⁵, Edward J. Gane⁶, Robert G. Gish⁷, Jeffrey S. Glenn⁷, Saeed Hamid⁸, Theo Heller⁹, Christopher Koh⁹, Pietro Lampertico¹⁰, Yoav Lurie¹¹, Michael Manns⁴, Raymundo Parana¹², Mario Rizzetto¹³, Stephan Urban¹⁴, Heiner Wedemeyer¹⁵, on behalf of the Hepatitis Delta International Network (HDIN)¹

Yurdaydın et al. J Hepatol 2017

 ≥ 2 log reduction in HDV viral load at EOT compared to baseline- target for the assessment of initial treatment efficacy with drugs currently being evaluated

Farci et al. Gastroenterology 2004

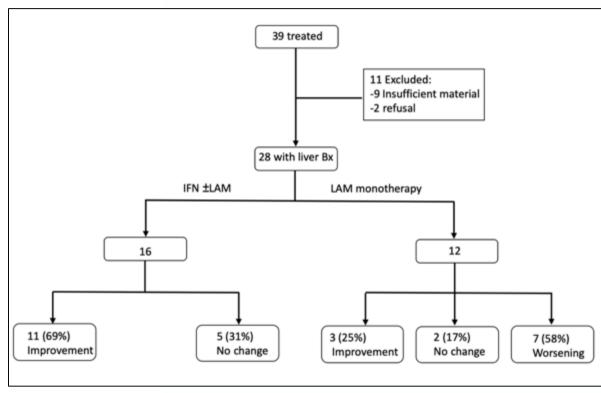
Table 1. Treatment goals for clinical trials in HBV/HDV coinfection.

Treatment goals	Parameter	Readout
Virologic efficacy during treatment	Relative HDV RNA decline during treatment compared to baseline levels	HDV RNA (IU/ml) with a validated HDV RNA assay with sufficient sensitivity
Virologic efficacy off treatment	HDV RNA suppression/decline 24 weeks off- treatment and during further long-term follow-up	HDV RNA (IU/ml) with a validated HDV RNA assay with sufficient sensitivity
Serological efficacy-1	HBsAg levels (log declines and loss) at end-of treatment and off treatment	validated quantitative HBsAg assay (IU/ml)
Serological efficacy-2	Seroconversion to anti-HBs at end-of treatment and off treatment	validated quantitative anti-HBs assay (IU/L)
Biochemical efficacy (1)	ALT normalisation at the end of treatment and off- treatment	Validated assays (IU/L)
Biochemical efficacy (2)	Relative ALT declines during treatment and off treatment	Validated assays (IU/L)
Combined virologic and biochemical response-1	HDV RNA decline of 2log (or PCR negativity if baseline viral load is <100 IU/ml) in combination with ALT normalisation at EOT	HDV RNA (IU/ml) with a validated HDV RNA assay with sufficient sensitivity. ALT (IU/L) with standard biochemical assays.
Combined virologic and biochemical response-2	HDV RNA decline of 2log (or PCR negativity if baseline viral load is <100 IU/ml) in combination with ALT normalisation at 24 weeks off treatment and further during long-term follow-up	HDV RNA (IU/ml) with a validated HDV RNA assay with sufficient sensitivity. ALT (IU/L) with standard biochemical assays.
Histological efficacy – grading	Improvement of HAI of at least 2 points	Total Ishak inflammation score (A + B + C + D); 0-18 points
Histological efficacy – staging	No worsening of fibrosis scores	Ishak score (0-6 points)
Safety - Drug-specific AEs	AEs and SAEs	Severity and relation ot study drug
Safety – Disease-specific AEs	HBV and HDV reactivation	HBV DNA, HDV RNA, ALT and other liver function parameters
ProQOLs	Quality of life during and after end of therapy	EQ5, SF-36, etc.

Table 2. Additional explorative endpoints for clinical trials in HBV/HDV coinfection.

Endpoint	Parameter	Readout
Liver stiffness	Liver elastography	e.g. fibroscan, ARFI
Serum biomarkers for inflammation and fibrosis	Established scores (e.g. APRI, FIB4, Delta Fibrosis score [*]) Novel parameters	Serum-/Plasma tests
Intrahepatic virologic response (HDV and HBV)	Intrahepatic HDV RNA, hepatitis D antigen staining, HBV DNA, HBV RNA, HBV cccDNA	Standardized virologic assays
Immune responses	HDV-specific T cells, HBV-specific T cells, NK cell frequency and function, soluble inflammatory mediators	T cell assays, flow cytometry, bead-arrays

AFRI, acoustic radiation force impulse; APRI, aspartate aminotransferase to platelet ratio index; cccDNA, covalently closed circular DNA; FIB4, Fibrosis-4 score; HBV, hepatitis B virus; HDV, hepatitis D virus; ProQOLs: Professional Quality of Life scales. * Ref. 62.

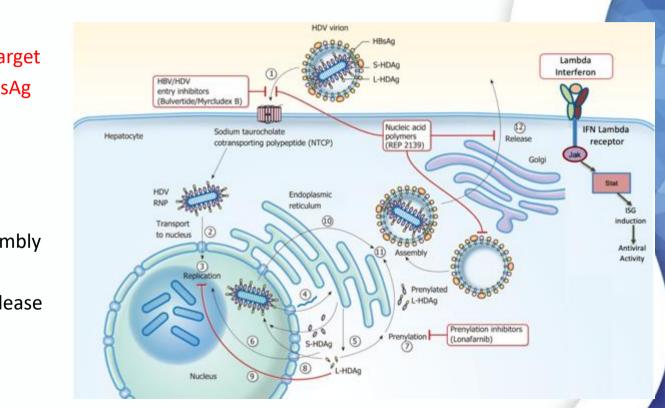

Yurdaydin et al. J Hepatol 2019

Histologic Improvement following IFN-alpha therapy

SOROKA

CLALIT 100

Adapted from Yurdaydın et al. J Viral Hepatitis. 2008


CHD infection: Developing Drugs for Treatment Guidance for Industry: DRAFT GUIDANCE (October 2019)

Endpoints for phase III clinical trials

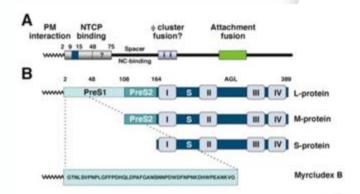
- Surrogate endpoints that are reasonably likely to predict clinical benefit
- Preferred: % of trial patients with undetectable serum HDV RNA and ALT normalization.
- Acceptable: Greater than or equal to 2 log10 decline in HDV RNA and ALT normalization

Timing of primary endpoints assessment

- The optimal timing of the primary endpoint assessment is unknown
- For therapies intended to be administered indefinitely, an <u>on-treatment</u> assessment after a predefined time period can be acceptable for efficacy.
- For therapies intended to be administered for a finite duration, FDA's preferred endpoint is an <u>off-treatment</u> assessment of efficacy.

CLALIT 100

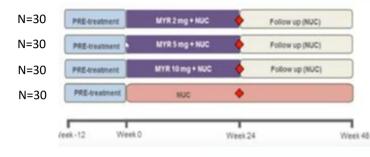
Novel therapeutic targets for HDV

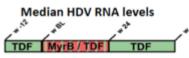

- No RNA polymerase to target
- HDV is dependent on HBsAg

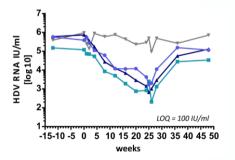
- Inhibition of viral entry (Micrludex-B)
- Interference in viral assembly Lonafarnib
- Interference in HBsAg release (Nucleic acid polymers)
- Immunomodulation (pegIFN-Lambda)

Myrcludex B

- First-in-class entry inhibitor for treatment of chronic HBV and HDV
- Synthetic 47 amino acid, Nacylated preS1 lipopeptide
- Targets Na-taurocholate cotransporting polypeptide (NTCP)
- Exclusively targets parenchymal liver cells
- Blocks receptor functions of NTCP and HBV/HDV virus entry


Myrcludex B- Pilot study


SOROKA


CLALIT 100

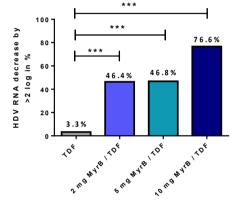
24 weeks 48 weeks 24 weeks Myrcludex B PEG IFN-α 2a Follow up N=8 2 mg QD SC 180 mcg QW SC Mvr B + PEG IFN-α 2a N=8 Follow up PEG IFN-α 2a 180 mcg QW Primary endpoint: PEG IFIN-α 2a N=8 Follow up 180 mcg QW SC HBsAg decrease at W12 Not met W24 HDV RNA -**1.67 log** 2 pts HDV RNA Neg Myr B+ PEG IFN HDV RNA -2.59 log. 5 pts HDV RNA Neg **PEG IFN** HDV RNA -2.17 log. 2 pts HDV RNA Neg

Myrcludex B- Open-label phase 2b study

Median RNA log change from baseline:

 Myr B 2mg: -1.75

 Myr B 5mg: -1.60

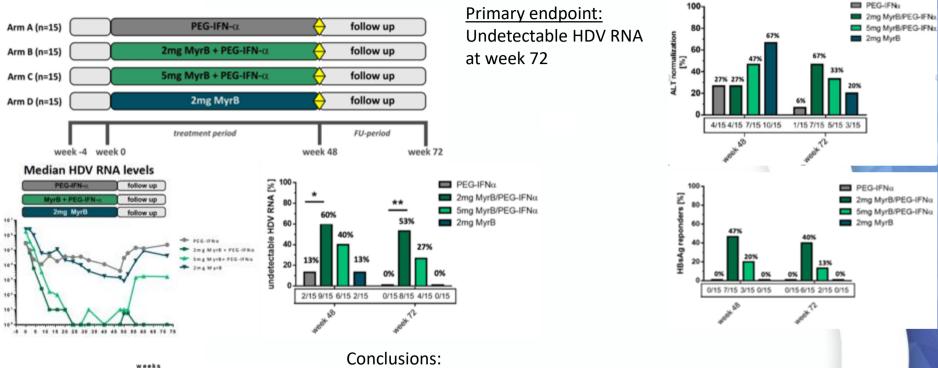

 Myr B 10mg: -2.70

 TDF: -0.18

Conclusion:

- Bulevirtide monotherapy induced HDV RNA declines and improved ALT levels
- Longer therapies than 24 weeks are needed (modelling suggests 2-3 years)

<u>Primary endpoint:</u> 2 log decline HDV RNA or RNA Neg at Wk 24


- ALT levels normalize in 40-50% (not dose-dependent)
- HBsAg does not change
- Bile acids increase without pruritus

Wedemeyer et al. EASL 2018

SOROKA

CLALIT 100

MYR 203 phase 2-End of study results

weeks		
Median serum HDV RNA log reduction	week 48	week 72
PEG-IFNa	-1.30	-0.26
2mg MyrB + PEG-IFNα	-4.81	-4.04
5mg MyrB + PEG-IFNα	-5.59	-1.48
2mg MyrB	-2.84	-1.08

- Myr B monotherapy is safe and induces HDV RNA AND ALT reduction on Rx, but most patients relapse
- Combo therapy shows improved efficacy and may induce cure in a subset of patients

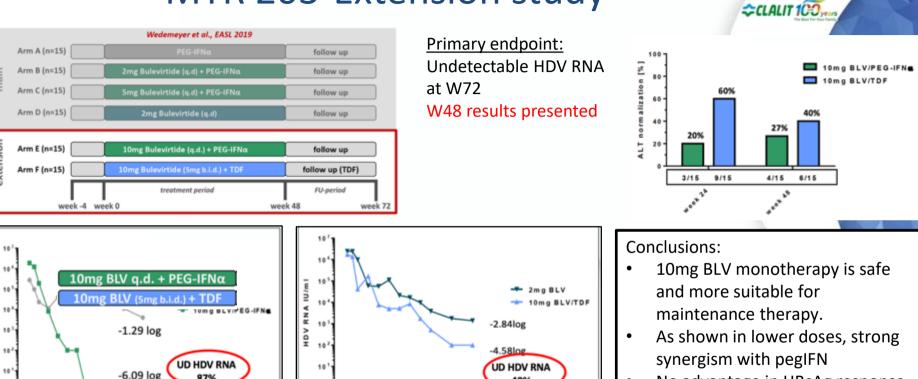
Wedemeyer et al. EASL 2019

SOROKA

MYR 203-Extension study

main

tensio


ŝ

RNA

ЧDV

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

weeks

10 15 20 25 30 35 40 45 50 55 60 65 70 75

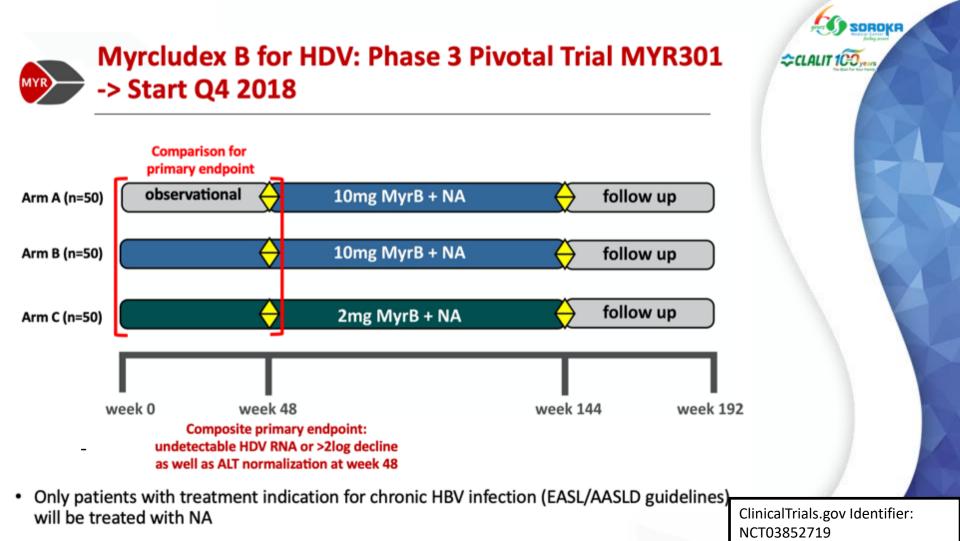
HBsAg response: 6.7%

HBsAg response: 0%

weeks

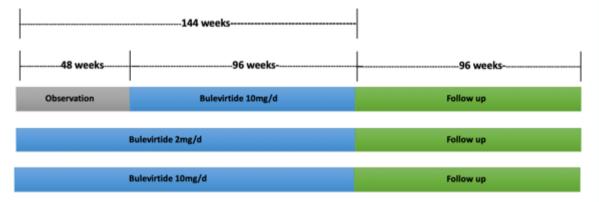
-5 0 5

10mg BLV q.d. + PEG-IFNα


10mg BLV (5mg b.i.d.) + TDF

40%

 No advantage in HBsAg response over lower doses


SOROKA

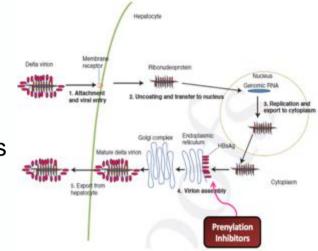
 Prolonged Rx (2-3y) will be studied in phase III trials

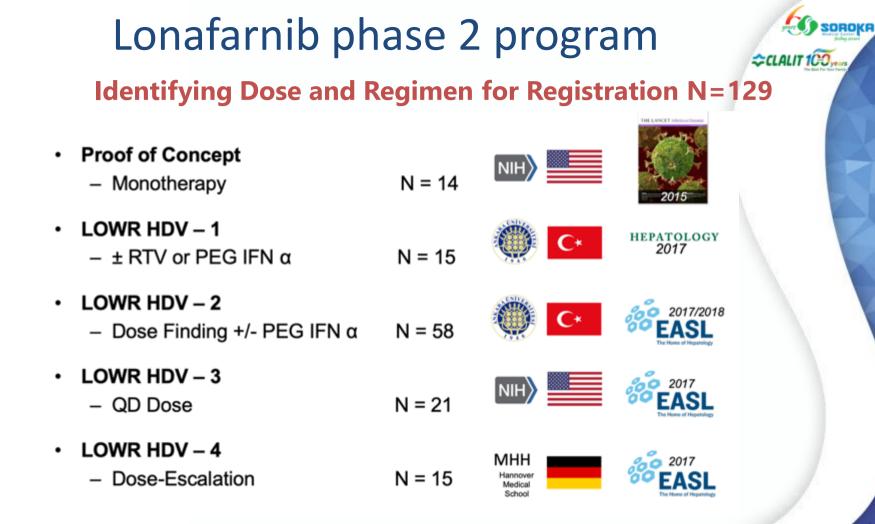
Phase 3 Study of Bulevirtide in Patients With CHD

A Multicenter, Open-label, Randomized Phase 3 Clinical Study to Assess Efficacy and Safety of Bulevirtide in Patients With Chronic Hepatitis Delta

Primary outcome measure

Combined response: Undetectable HDV RNA or decrease by ≥ 2 log10 IU/ml from baseline


+

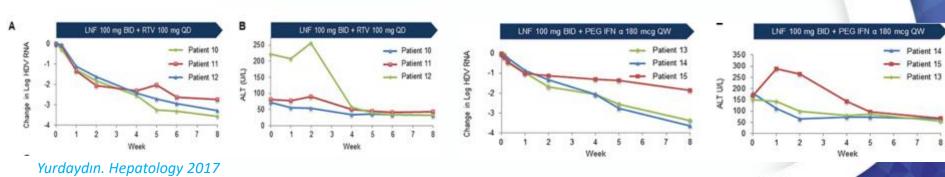

ALT normalization at week 48 weeks

ClinicalTrials.gov Identifier: NCT03852719

Lonafarnib

- Prenylation- lipid modification that involves addition of prenyl lipids to proteins resulting in promotion of membrane association and protein–protein interactions
- Small molecule, oral, prenylation inhibitor that inhibits attachment of prenyl lipid farnesyl to LHDAg
- Disruption of prenylation of LHDAg prevents the interaction with HBsAg and formation of secreted particles
- POC study- 14 pts, 28 days, LNF 100mg/200mg vs placebo Significant HDV RNA log decline, GI side effects with higher doses, no evidence of virological resistance

LOWR HDV-1

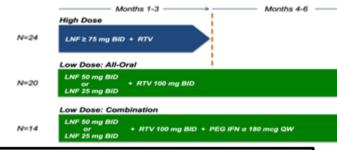

CLALIT 100

100.000

1.81.04

- Assess tolerability and viral response of different doses of LNF as monotherapy or in combination with RTV or PEG-IFNa
- Primary endpoint: HDV-RNA decline between baseline and end of treatment (8/12 weeks)
- Combo therapies significant viral decline and ALT normalization, improved GI tolerance

Viral rebound in all but 2 pts who had ALT flares \rightarrow HDV UD \rightarrow HDV UD/LLOQ

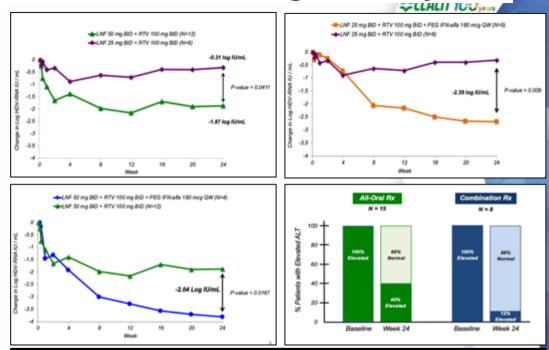


22144

14 - 3

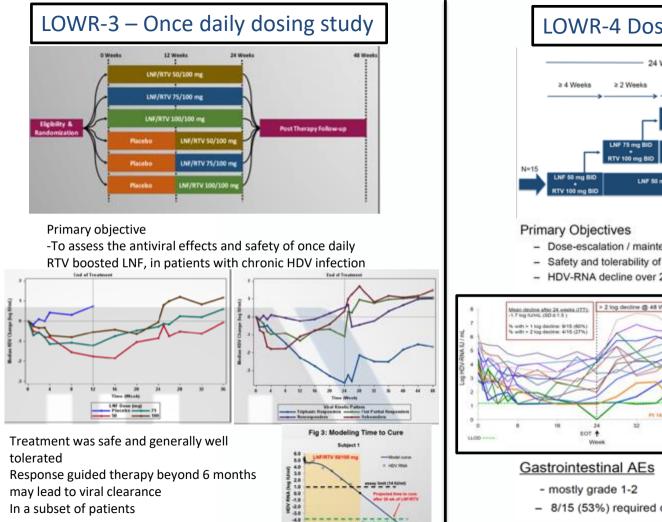
4-3

LOWR HDV – 2: "Dose Finding" Study



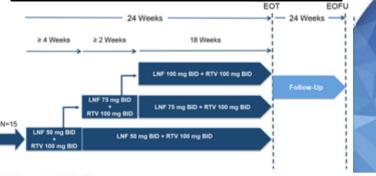
Aim: Identify optimal combination regimens of LNF and RTV \pm PEG-IFN α with efficacy and tolerability for longer term dosing

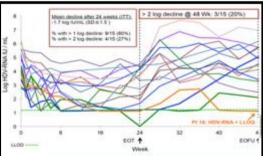
Primary endpoint:


HDV RNA decline from baseline \rightarrow EOT

	# of Patients						
Regimen	BL VL ≤ 4 log (%)			BL VL > 4 log (%)			
	Dosed 24 Whs	BLOQ (%)	≥ 2 log decline (%)	BLOQ (%)	≥ 2 log decline (%)		
LNF 50 mg BlD + RTV 100 mg BlD + PEG IFN-α	4	0/0 (0%)	0 / 0 (0%)	2/4 (50%)	4/4 (100%)		
LNF 25 mg BID + RTV 100 mg BID + PEG IFN-α	5	1 / 1 (100%)	1 / 1 (100%)	2 / 4 (50%)	3 / 4 (75%)		
LNF 50 mg BID + RTV 100 mg BID	12	5/5 (100%)	5/5 (100%)	0 / 7 (0%)	1/7 (14%)		
LNF 25 mg BiD + RTV 100 mg BiD	6	0/3 (0%)	0/3 (0%)	0/3 (0%)	1/3 (33%)		

 Summary: All-oral LNF +RTV regimens- 39% viral response at W24 Addition of PEG IFN to LNF +RTV- 89% viral response at W24 Post Rx ALT flares followed by HDV RNA negativity Mild-moderate GI side effects with LNF 25mg/50mg +RTV
 Conclusions: All-oral regimens- viable option for patients with low viral load Combo therapy results in highest response rate


Yurdaydın et al. EASL 2018


-5.0

Koh et al. EASL 2017

LOWR-4 Dose Escalation study ROKA

- Dose-escalation / maintenance up to LNF 100 mg BID + RTV for 24 weeks
- Safety and tolerability of LNF + RTV dose-escalation for 24 weeks
- HDV-RNA decline over 24 weeks

53% Patients Normalized ALT at End of Treatment All Patients with Elevated ALT at End of Follow-Up 0/15 0/15 Baseline Week 8 Week 16" Week 24* Week 48

ALT Normalization

- 8/15 (53%) required dose reduction and 2/15 (13%) were discontinued

Wedemeyer et al. EASL 2017

D-LIVR : PHASE 3 GLOBAL STUDY

<u>D</u>elta-<u>L</u>iver <u>I</u>mprovement and <u>V</u>irologic <u>R</u>esponse in HDV

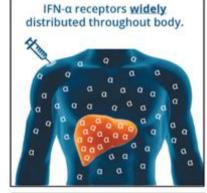
	Run-In	On-treatment	Post-treatment	
	12-24 weeks	48 48	24 weeks	
N = 175	Nuc.	♦ Lonafarnib 50 mg BID ♦ Ritonavir 100 mg BID	Follow Up	
N = 125	Nuc.	Lonafarnib 50 mg BID Stonavir 100 mg BID PEG IFN-alfa-2a	Follow Up	
N = 50	Nuc.	N ^{or PEG IFN-alfa-2a}	Follow Up	
N = 50	Nuc.	Placebo	Follow Up	

Primary Endpoint at Week 48

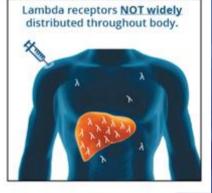
≥ 2 log decline in HDV RNA
 +

Normalization of ALT

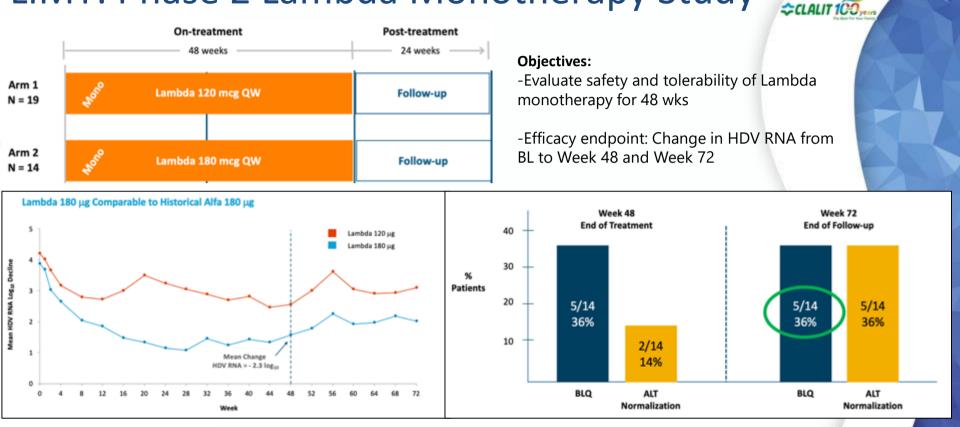
Secondary Endpoint at Week 48


- Histologic improvement
 - > 2-point improvement in HAI inflammatory score
 - No progression in fibrosis
- Improvement of fibrosis

ClinicalTrials.gov Identifier: NCT03719313

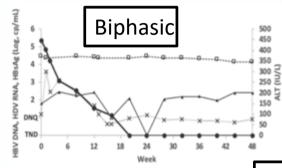

Pegylated Interferon Lambda

- A novel first in class Type III interferon •
- Binds to a unique receptor versus Type I interferons •
 - Highly expressed on hepatocytes
- Limited expression on hematopoietic cells and CNS cells
- Uses similar downstream signaling pathway as Type I • interferons
- Greater than 3,000 patients in 17 clinical trials (HCV / • HBV)
- Comparable antiviral activity with less of the typical IFN alfa related side effects*


* Chan, HLY et al, J Hepatology 2016

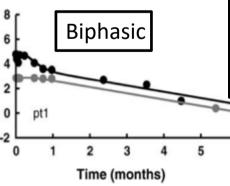
CLALIT 100

LIMT: Phase 2 Lambda Monotherapy Study



SOROKA

LIMT: Phase 2 Lambda Monotherapy Study


			48 V On-Tre	24 Week Post-Treatment	
Dose		N	Mean Log ₁₀ Decline	# BLQ	# BLQ
All 180 µg High BL VL	14		5/14	5/14	
	All	14	14	36%	36%
		8		3/8	2/8
	High BL VL	8	-2.3	38%	25%
	Low DL M			2/6	3/6
	Low BL VL	6		33%	50%

LAMBDA

Classification	Adverse Event	Number of Patients Experiencing Grade of AE (N=33)				
		Gr 1	Gr 2	Gr 3	Gr4	
Constitutional	fatigue, asthenia	10	2	1		
Flu-like	pyrexia, chills, chest pain, flu-like	chills, chest pain, flu-like 21 5				
Neurological	dizziness, headache	17 8		-	-	
Musculoskeletal	arthralgia, myalgia, back pain, musculoskeletal pain		9			
Psychiatric	depression, irritability, insomnia	1		•	•	
Hematological	natological neutrophil count decreased		1		1**	
Lab Abnormalities	bilirubin / ALT / AST / GGT increase	2	1	9	1**	

Conclusions:

-Durable virologic response of Lambda (36%) compares favorably to historic rates for Alfa 180 µg (28%)

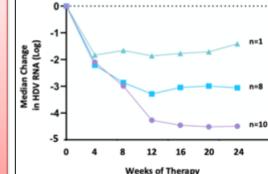
SOROKA

CLALIT 100

 Better tolerability than Alpha

Histologic improvement?

Etzion et al. AASLD 2019


LIFT HDV Study

- Phase 2a, Open-Label Study
- Lambda 180 mcg/w+ LNF 50mg/RTV 100 bid for 24 weeks
- Primary Endpoints:

>2 log decline HDV RNA at W24

Safety of triple combination for 24 weeks

% of Patients	Week 24 HDV RNA
95%	> 2 Log Decline
53%	BLQ
37%	Undetectable

Summary	
---------	--

- Therapy with LMD/LNF/RTV was relatively safe in most patients for up to 6 months.
- Per protocol discontinuation of triple combination therapy was mostly due to known side effects related to peginterferon lambda.

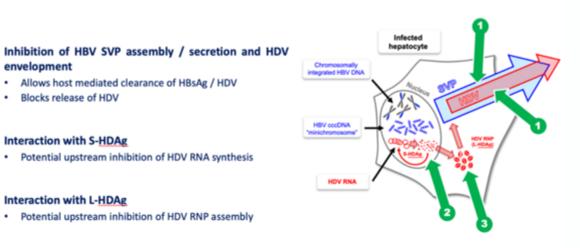
	Most Common Adverse Events								
Nausea	Diarrhea	Anorexia	Abdominal Bloating	GERD	Fatigue	Weight Loss	Anemia	Hyperbilirubinemia	
63%	100%	47%	63%	63%	32%	37%	32%	21%	

Dose Reductions/Discontinuations				
	Hyperbilirubinemia	Anemia	Ascites	
Dose Reduction	2	1		
Discontinuation	3		1	

replicor Nucleic Acid Polymers—REP 2139

- Nucleic acid polymers (NAPs) are oligonucleotides with broad spectrum in vitro antiviral activities
- Proposed to bind to amphipathic protein structures

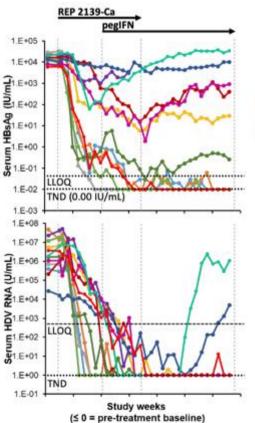
envelopment


•

٠

Blocks release of HDV

Interaction with S-HDAg


Interaction with L-HDAg

REP 21

REP 2139-Ca / Pegasys[™] Combination Therapy in HBV / HDV Co-infection

Rapid HBsAg clearance prior to pegIFN

Universal and rapid HBV RNA response

Target not detected in 11/12 participants during therapy

Even in participants with moderate HBsAg response

Likely due to upstream direct effects against HDV replication


Completed treatment and 3.5 years of follow-up		11
Clinical response	Normal ALT	8/11 (73%)
	Normal / declining liver median stiffness	7/11 (64%)
HBsAg response	< 1 IU/ml	6/11 (55%)
	≤ LLOQ (0.05 IU/mL)	5/11 (42%)
	Seroconversion	4/11 (36%)
HDV RNA response	> 2 log ₁₀ reduction from baseline	9/11 (82%)*
	TND	7/11 (64%)

*2 participants maintaining 2.67 and 2.12 log₁₀ HDV RNA reduction from baseline at 3.5 years follow-up did not maintain normal liver function during follow-up.

Functional cure of HDV at 3.5 years of follow-up (HDV RNA TND, ALT normal)		7
HBV DNA response	≤ 2000 IU/mL	7/7 (100%)
	Target not detected (TND)	5/7 (71%)
HBV virologic response	Virologic control HBV (HBV DNA ≤ 2000 IU/mL, normal ALT)	3/7 (43%)
	Functional cure HBV (HBsAg < LLOQ, HBV DNA TND, normal ALT)	4/7 (57%)
	HBV clinical benefit, no therapy required (Low risk of progression, reduced risk of HCC)	7/7 (100%)
On-therapy flare	Asymptomatic transaminase flare while HBsAg ≤ 1IU/mL	7/7 (100%)

<u>REP 501</u>

REP 2139-Mg IV vs SC in HBV / HDV co-infection

Objectives:

Assessment of safety tolerability and efficacy

Endpoints:

-HBsAg and HDV RNA loss during therapy -functional cure

-HBsAg seroconversion

Therapeutic transaminase flares

of HBV & HDV >6 months

following treatment cessation

Tentative starting date: Tentative Q4 2020 .

KA

In summary

- CHD is a severe disease for which current management is unsatisfactory
- Data on surrogate endpoints predicting long term clinical benefit is sparse
- Clinical trials assessing novel therapies for HDV rely on endpoints that are <u>reasonably</u> likely to predict clinical benefit
- Long term follow up will be required to establish the validity of these endpoint as surrogate markers of clinical benefit
- Therapies allowing viral suppression/elimination are on the horizon

Leaders have to be dealers in hope.

LALIT 100

~ Napoleon Bonaparte

Ohad Etzion M.D. Department of Gastroenterology & Liver Diseases Soroka University Medical Center Email: ohadet@clalit.org.il

20

Thank You!